3D打印让液压阀减重50% 变革流体流动优化
“液压阀块集成块是复杂的组件,其中许多管道走到一起并相交。传统的加工方式,液压集成块的交叉歧管是通过机械加工交叉钻孔完成的。然而由于机加工的角度限制,一方面流体效率不能得到最高效的优化,经常需要在流道内部添加插头来调整流量,另一方面加工过程中还面对着同位精度的挑战。而3D打印带来了流体流动优化的新领域…”
图像显示了流体通道内部90度垂直交叉的结构,而流体方向发生了90度的弯曲,其加工方式通过交叉钻孔,并在流体块的一段有终端插头。
图:流体90度的急转弯
计算机流体动力学(VFD)分析,显示有些区域会面临流量小的问题,而有些部位则会面临湍流现象。为了调整流形则需要进一步的内部插头,但增加了复杂性,而且并没有改变流体必须通过急转弯的局面。从流体力学的角度来看,传统方式加工的液压集成块设计存在许多有待改进的空间,只是当时我们没有3D打印技术这么灵活的手腕。
图:为解决左图流体的通畅性,右图增加了内置插头
选择性激光融化增材制造技术,通过一层一层融化金属粉末来制造产品,使得我们能够预先优化设计流体内部的流动路径,同时减少不必要的阀体重量。
第一步:提取流体路径
第一步是提取流体路径,包括那些交叉钻孔设计,这跟传统机械加工从一个坚实的金属块开始不同,这一步需要把传统加工流体并不通过,而只是为了加工需求而钻的孔的这部分设计去掉。留下那些流体会经过的管道,和功能歧管。最后提取的设计如右图。
图:提取左图流体经过的路径,获得右图设计
第二步:优化流形
现在,我们开始减少和简化流体流动路径,无需交叉钻孔的设计约束,并且可以将锋利的角换成圆形弯曲的设计而减少湍流现象,图像显示了一个流动路径概念,确定流动分离和停滞区。
图:局部优化流形
第三步:确定壁厚和支撑结构
一旦流体路径进行了优化,我们需要确定壁厚和支撑结构,使用有限元分析(FEA)应力模型来计算和分析流体力学压力。
图:为增材制造而进一步优化
最后,支撑结构作为一个支架来保持组件一起,并且在构建过程中起到构建支持和锚的作用。
图:减重50%
这个伟大的例子不仅仅将液压阀体减重50%,而且还改进流体流动的效率,避免了进一步组装需要,提高了阀体性能和稳定性。

图片新闻
最新活动更多
推荐专题
- 结构工程师(3D打印机/FDM) 深圳市华宇芯科技有限公司
- 3D打印操作工 重庆安德瑞源科技有限公司
- 区域销售经理/总监(医疗-西南)-3D打印 纳思达股份有限公司
- 机械结构工程师(3D打印机) 深圳市智能派科技有限公司
- 3D打印销售经理 上海普利生机电科技有限公司
- 非金属材料3d打印工艺工程师 北京易加三维科技有限公司
- 3D打印售前工程师助理 斯棱曼激光科技(上海)有限公司
- 3D打印机装配工 深圳市洋明达科技有限公司
- 3D打印设备工程师 广东兰湾智能科技有限公司
- 产品经理(3D打印培训与企业服务) 上海复志信息技术有限公司
- 华东销售经理 江苏省/苏州市
- 高级采购 北京市/海淀区
- 海外销售工程师 北京市/海淀区
- 海外销售经理 北京市/海淀区
- 销售工程师 北京市/海淀区
- SEO搜索引擎优化专员 北京市/海淀区
- 嵌入式软件工程师(ARM) 山东省/潍坊市
- 光学工程师 山东省/潍坊市
- DQE经理 广东省/深圳市
- 业务员 广东省/深圳市
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论