侵权投诉
搜索
更多>> 热门搜索:
当前位置:

OFweek3D打印网

增材制造

正文

埃因霍温科技大学:研究人员使用3D打印机复制微血管结构

导读: 埃因霍温科技大学的一组科学家一直在这条路线进一步探索,正如他们在“3D打印圆形微流体通道以模拟微脉管系统”中所解释的那样,去年在蒙特利尔举行的纳米生物技术海报会议上该技术已被提出。

微血管是指心血管系统的微细血管,它们在显微镜下才能见到。微血管指通连小动脉和小静脉间的细小血管,分布于各种组织和器官中,分支通连成网,故也称终末血管床。您可能熟悉血管系统,但可能还没有意识到毛细微血管系统是您体内的重要参与者,这些微血管负责微循环。

埃因霍温科技大学:研究人员使用3D打印机复制微血管结构

微脉管系统由小动脉,毛细血管,动脉细胞等组成,并且血管系统在过去几年中已经多次与3D打印相关联,从生物打印的血管支架到用于微血管手术的3D打印模型,再到可行的3D打印生物组织。

今天,研究人员仍然面临着设法模仿和重新创建微流体系统的方法,这种系统采用3D打印机制造,趋向于使用诸如“片上器官”之类的设备。埃因霍温科技大学的一组科学家一直在这条路线进一步探索,正如他们在“3D打印圆形微流体通道以模拟微脉管系统”中所解释的那样,去年在蒙特利尔举行的纳米生物技术海报会议上该技术已被提出。

埃因霍温科技大学:研究人员使用3D打印机复制微血管结构

模仿血管结构的3D打印铸造框架,内置独立碳水化合物玻璃体结构。用溶解在PDMS中的碳水化合物玻璃溶液后用染料溶液灌注网络架构,比例尺为500μm。

使用碳水化合物玻璃体基质进行3D打印是研究人员提出的一种可行选择,但埃因霍温科学家希望在制造过程中使用多种类型的材料,同时使零件更小:“我们的主要重点是将直径减小到更接近微血管的尺寸,即在10-500微米的范围内,并能够设计可以改变血管直径的分层三维分支网络。”

该团队建立了一台3D打印机,其加热桶连接到Nordson EFD performus III压力控制系统。 标准喷嘴的直径为0.4毫米,研究人员能够通过限制或加速运动来调整直径限制。在使用自支撑碳水化合物玻璃体基质作为选择材料时,打印复杂几何形状方面具有更大的自由度。 正如在许多3D打印研究项目中一样,温度是一个重要的考虑因素,温度把握不好有可能导致零件变形。

埃因霍温科技大学:研究人员使用3D打印机复制微血管结构

碳水化合物纤维从水滴串联穿过

印刷框架,速度为600毫米/分钟。 3根纤维的显微图像,顶部和底部从左到右和中间从右到左以600mm / min的速度排列,纤维直径~100μm

埃因霍温科技大学:研究人员使用3D打印机复制微血管结构

箱线图的直径为平台的不同移动速度。提高速度可降低纤维插入物的方差和平均直径:300 mm / min的直径的高变化可以通过纤维的强锥形形状来解释,从而在纤维的开始和结束处产生不同的直径。这可能是由喷嘴尖端处的液滴凝固造成的,从而留下较少的材料。

研究人员表示,他们在3D打印微脉管系统工作中的很大一部分将围绕控制制造中的热元件。“这将为网络设计提供更大的自由度,并且它将提供精确控制光纤回流以形成单个平面内连接的可能性,”研究人员总结道。 “最后,3D打印的模型将用于通过微血管网络研究血液和血液中的颗粒流动,从而更好地了解微脉管系统中的灌注和颗粒分布相互作用。

埃因霍温科技大学:研究人员使用3D打印机复制微血管结构

声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

OFweek品牌展厅

365天全天候线上展厅

我要展示 >
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号