回顾:2020年度军工材料领域的十个重大事件
四、新型核燃料向低铀化转变
高纯度贫铀是美国正在进行的国家核武器储备现代化的重要战略物资。然而,根据美国能源部国家核安全局的估计,贫铀原料供应非常有限,其目前的贫铀金属供应将在本世纪20年代末耗尽。美国国家核安全局也不具备将贫铀转化制造成武器部件所需的全部能力,而这些部件是核储备现代化所必需的。为减少对铀的依赖,寻找能够替代铀的材料,开发新型核燃料迫在眉睫。
2020年9月,美国能源部爱达荷国家实验室、德克萨斯州农工大学核工程与科学中心、清洁堆芯钍基核能公司三方合作研发了一种名为ANEEL的新型核燃料。这种燃料是由放射性金属钍和“高丰度低浓铀”(铀-235丰度在5%至20%范围内)组成的混合物,将在美国生产,计划出口至印度等新兴核电市场,最快可以在2024年投入商业使用。金属钍有较高的熔点和较低的工作温度,抗堆芯熔毁能力强于金属铀。这种新型核燃料燃耗很深,可在反应堆中停留的时间更长,燃料利用率更高。此外,相较传统的核燃料,新型核燃料使用了更少的铀,产生废物减少80%以上,“燃烧”时产生的钚也将进一步减少,有利于降低核燃料成本、防止核扩散、减少核废物处理。
五、超高温陶瓷打破4000℃耐温大关
高超声速飞行器机翼设计中将前缘的倒圆半径减小到几厘米,从而带来升力和可操纵性显著提升,同时减少空气动力阻力。但是,当飞行器往返大气层时,机翼蒙皮表面温度可达2000°С,其最外侧边缘部位甚至将达到4000°С以上。因此,开发耐高温材料和结构是当前高超声速飞行的发展重点,也是设计过程中面临的主要难点。
美国布朗大学曾预测,基于铪-碳-氮(Hf-C-N)体系的陶瓷材料理论上具有目前所有材料中最高的熔点,理论值为4200℃左右,具有杰出的导热性和抗氧化性。在此基础上,2020年5月,俄罗斯国立科技大学的科研人员使用自蔓延高温合成法,开发出基于铪-碳-氮体系的新型高温陶瓷材料,其化学式为HfC0.5N0.35。该材料不仅具有超过4000℃的熔点,其硬度达到21.3吉帕,高过目前最具应用前景的ZrB2/SiC(20.9吉帕)和HfB2/SiC/TaSi2(18.1吉帕)。新型陶瓷材料有望在飞机耐高温部件,如喷气发动机热端部件和高超声速飞机机翼前缘等部位应用,此外也可推广应用至其他航空航天装备、火箭导弹制造、特种军事技术设备等领域。
六、轻量化成为防弹材料的发展重点
典型的防弹衣主要由芳纶“凯夫拉”纤维、超高分子聚乙烯纤维制成,但为了提升防弹性能而不断增加的厚度和重量,造成防弹衣穿着舒适性降低,穿着者的机动灵活性和工作便捷性也受到较大影响。此外,直升机、运输机等航空装备对于防弹性能的要求越来越高,但受限于发动机性能,难以承受防弹结构无限的加厚加重。防弹材料高性能化、轻薄化,已成为该领域迫切需求和主流发展趋势。
英国和泰国合作推广使用了轻量化的石墨烯增强防弹衣。2020年4月,英国PlanarTech公司宣布与泰国IDEATI达成协议,推广应用其2AM系列石墨烯增强防弹背心和防弹板产品。2AM是一种由石墨烯和超高分子聚乙烯组成的复合材料,它利用了石墨烯可显著提升强度的特性来制造超轻型防弹衣。由2AM材料制成的A-10418产品,是目前市面上最薄(20毫米)、最轻(1.8千克)、且获得美国国家司法协会(NIJ)弹测认证合格的IV级独立防弹板。向复合材料中添加石墨烯纳米颗粒可有效的将独立防弹板背面变形程度(BFD)降低至仅11.3毫米。2AM系列产品已批量生产,并至少交付1000件供泰国皇家陆军使用。未来也有望在防爆盾、防弹舱门等产品中取得应用。
英国马歇尔与奎奈蒂克合作推出新一代军用装甲材料。2020年8月,英国马歇尔航空航天与防务集团与英国奎奈蒂克(QinetiQ)公司签订了独家合作协议,销售和安装C-130“大力神”最新一代机型的轻型装甲——LAST Armor LWA。这种装甲由高强度聚乙烯制成,比目前在C-130J上应用的LAST装甲解决方案轻约380千克,仅为旧款LAST装甲重量的一半,能够为机组人员提供同等的防护性能。在装甲表面涂覆环保涂层后,即使在最恶劣的环境下,装甲也可以保持化学惰性不腐蚀。由于结构轻质,可显著节省飞机燃料,减少了对飞机重心的影响,使C-130-30变体机型具有完整的载荷能力。同时,在定期维护或者作为独立部件使用时,装甲可快速轻便的安装和拆卸,确保以最佳状态完成飞行任务。
七、新一代飞机超高温防火密封件可在315℃下工作
专用防火密封件主要应用于飞机机身、吊架、反推力装置和发动机等部件中,其主要作用是防止在正常工作条件下气流从机体内特定的工作区域扩散至其他区域。对于飞机来说更加重要的一点是,使用专用防火密封件可预防由机内局部失火引发的更大事故,它可抑制火势向机体其他部位蔓延,保证飞机在起火后仍拥有至少15分钟的缓冲时间安全着陆,确保人身安全。因此,专用防火密封件耐热温度越高,可承受发动机内的极端环境温度越高,理论上意味着飞机发动机性能越强,飞机的安全系数越好。
2020年5月,瑞典制造商特瑞堡密封系统公司推出了一款超高温密封件,可在-40℃到+315℃或更高的温度下工作,远超过其上一代产品。新一代超高温密封件的全寿命周期为60000个飞行周期,克服了高温下聚硅氧烷易松弛、易压缩形变的固有特性,可在更高温度的飞机发动机部位中使用。在热浸试验中,新一代超高温密封件的性能优于其他防火密封件。在所有测试条件下,其性能损失均比要求的标准值至少低15%。特瑞堡利用专有技术,使新型密封件能够适应任何几何形状,同时进一步减轻了结构重量并有效减少了零件数量,简化了装配过程,可直接对目前正在使用过程中的密封件产品进行替换。这款防火密封件的问世意味着飞机制造商可开发出性能更强、燃油效率更好的航空发动机,更好的落实可持续发展。
八、台积电和三星在硅半导体3纳米工艺上同台竞技
摩尔定律是对半导体行业发展规律的总结,在过去的数十年里一直对该行业的发展起到指引和推动作用。但随着器件性能的提升、尺寸的缩小,晶体管特征尺寸已经达到原子级别,晶体管中的载流子将不受控制,短沟道效应、热电子效应、漏电流增大等问题越来越严重。技术难度的增加和成本的急剧增长,使得先进工艺制程的研发速度逐渐放缓。目前14纳米及以下的工艺大多采用立体结构,即鳍式场效晶体管(FinFET)。但这种结构的前道工艺已接近物理极限,如继续微缩,电性能的提升和晶体管结构上都将遇到诸多问题。
图 10 三星在3纳米芯片量产工艺中率先使用全环绕栅极晶体管架构(图片来源:Ezone)
2020年1月,三星电子宣布计划在全球范围内率先实现3纳米芯片量产制程工艺,以确保其在半导体市场的技术优势。三星计划较为激进放弃FinFET晶体管技术,率先采用基于全环绕栅极(GAA)晶体管架构的3纳米技术。同5纳米制程工艺相比,该技术能使芯片的理论面积缩小35%、能耗降低50%、性能提高30%。三星自2002年起一直在开发闸极全环工艺技术,通过使用纳米片设备制造出了多桥-通道场效应管,确保减少功率泄漏,改善对通道的控制,这是缩小工艺制程的基本步骤。这种设计可实现更高效的晶体管设计,并具有更小的整体制程尺寸,从而在5纳米FinFET工艺上实现了每瓦性能的巨大提升。新工艺的实现还需要对显影、蒸镀、蚀刻等一系列工程技术进行革新,且为减少寄生电容还需导入替代铜的钴、钌等新材料。首批面向智能手机和其他移动终端的3纳米芯片将于2020年进行测试,并于2021年批量生产。对高性能芯片改进型产品,如图形处理器和封装到数据中心的人工智能芯片,将在2022年实现批量生产。
图片新闻
最新活动更多
-
7.30-8.1马上报名>>> 【展会】全数会 2025先进激光及工业光电展
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
-
精彩回顾立即查看>> 2024(第五届)全球数字经济产业大会暨展览会
-
精彩回顾立即查看>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
-
精彩回顾立即查看>> 全数会2024(第五届)中国智能制造数字化转型大会
-
精彩回顾立即查看>> Massivit大尺寸、超快速3D打印加速赋能教育创新需求
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论